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A new construction of fractal interpolation surfaces, using solutions of partial differential equations, is presented. We consider a set
of interpolation points placed on a rectangular grid and a specific PDE, such that its Dirichlet’s problem is uniquely solvable inside
any given orthogonal region. We solve the PDE, using numerical methods, for a number of regions, to construct two functions H
and B, which are then used to produce the fractal surface, as the attractor of an appropriately chosen recurrent iterated function
system.

1. Introduction

Fractals are known to produce extremely complicated and
impressive shapes, which many times resemble objects of
the physical world. They have been used extensively in
various scientific areas such as computer graphics, image
compression and processing, biology and metallurgy. They
usually emerge as attractors of Iterated Function Systems,
a notion introduced by Barnsley and Demko in [1]. An
Iterated Function System (IFS) is defined as a pair consisting
of a complete metric space (X , ρ), together with a finite set
of continuous, contractive mappings wi : X → X , i =
1, 2, . . . ,N (N ≥ 2). IFSs are able to produce extremely
complicated sets using only a handful of mappings. A more
general definition is that of the Recurrent Iterated Function
System (RIFS), which can also be used to construct fractal
sets.

In this paper, we will deal with the construction of fractal
surfaces, a subject firstly addressed by Massopust in [2] (see
also [3]), using mainly the notion of fractal interpolation.
Fractal Interpolation is an alternative to traditional interpo-
lation techniques, introduced by Barnsley in [4], that gives a
broader set of interpolants. Fractal Interpolation Functions
are constructed as attractors of specific IFSs or RIFSs. Using
this method, one can construct not only interpolants with
nonintegral dimension but also smooth, nonpolynomial
interpolants, or even splines and Hermite functions (see

[5, 6]). Fractal interpolation functions are highly irregular
and cannot be described using elementary functions such
as polynomials (excluding the trivial cases where the fractal
function is actually a polygonal line, a spline, or some other
ordinary interpolants).

In the years that followed, the problem of the construc-
tion of fractal surfaces has been dealt by many other authors
(see [7–13]), in the case where the interpolation points or the
vertical scaling factors are confined in some manner. In some
cases, the construction uses interpolation points, that are
restricted to be collinear in the borders of I = [0, 1]2, and in
some others, it uses maps with equal vertical scaling factors.
Recently, in [14], a general solution for arbitrary data was
given. This construction uses the values of the interpolation
points, as all the previous attempts did, as well as the values
at the borders of each specified region (which are chosen
arbitrarily). The fractal surface emerges as the attractor of an
appropriately chosen RIFS. The construction presented here
uses the results of [14] and extends a new method, which
uses the solutions of certain Partial Differential Equations,
that are then used to construct fractal interpolation surfaces
on arbitrary data, placed on rectangular grids.

2. Mathematical Background

2.1. Iterated Function Systems. As mentioned above, an
Iterated Function System {X ;w1−N} is defined as a pair
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consisting of a complete metric space (X , ρ), together with
a finite set of continuous, contractive mappings wi : X → X ,
with respective contraction factors si, for i = 1, 2, . . . ,N
(N ≥ 2). The attractor of an IFS is the unique set E, for which
E = limk→∞Wk(A0) for every starting compact setA0, where

W(A) =
N⋃

i=1

wi(A) ∀A ∈H(X), (1)

and H(X) is the complete metric space of all nonempty
compact subsets of X with respect to the Hausdorff metric
h (for the definition of the Hausdorff metric and properties
of 〈H(X),h〉 see [15]). A simple example of an IFS
defined on R2 is the one that produces the well-known
Sierpinski’s Triangle (see Figure 1(a)), which consists of the
three mappings:
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The attractor of the following IFS looks like a natural fern
(see Figure 1(b)):

w1

⎛
⎝
x

y

⎞
⎠ =

⎛
⎝

0 0

0 0.16

⎞
⎠
⎛
⎝
x

y

⎞
⎠ +

⎛
⎝

0

0

⎞
⎠,

w2

⎛
⎝
x

y

⎞
⎠ =

⎛
⎝

0.85 0.04

−0.04 0.85

⎞
⎠
⎛
⎝
x

y

⎞
⎠ +

⎛
⎝

0

1.6

⎞
⎠,

w3

⎛
⎝
x

y

⎞
⎠ =

⎛
⎝

0.2 −0.26

0.23 0.22

⎞
⎠
⎛
⎝
x

y

⎞
⎠ +

⎛
⎝

0

1.6

⎞
⎠,

w4

⎛
⎝
x

y

⎞
⎠ =

⎛
⎝
−0.15 0.28

0.26 0.24

⎞
⎠
⎛
⎝
x

y

⎞
⎠ +

⎛
⎝

0

0.44

⎞
⎠.

(3)

There are two known algorithms, that are used to con-
struct the attractor of an IFS, the Deterministic Algorithm
(DA) and the Random Iteration Algorithm (RIA). The first
starts with an arbitrary compact set A0 and produces the
sets A1 = W(A0) = ⋃N

i=1 wi(A0), A2 = W(A1), and so
forth. The sequence A0, A1, A2, . . . obviously converges to
the attractor of the IFS. The RIA, on the other hand, starts
with an arbitrary point x0 and selects randomly (using a
set of probabilities that sum to 1) one of the mappings of
the IFS, to produce a new point x1 = wi1 (x0) (where wi1 is
the selected map). The operation is continued indefinitely.
The produced points trace out the attractor. While the
first algorithm constructs the attractor itself, it uses a great
amount of memory, especially if one applies many iterations.
Thus, many times, the RIA is preferred. However, one should

choose carefully the set of probabilities; otherwise some
sections of the attractor will not be traced out as clear as
others. In fact, the set of probabilities determine a unique
“invariant measure” μ that is supported on A (the attractor
of the IFS). If each pixel in a computer screen is colored
according to the visitation frequency of the random iterates
of RIA, then one obtains a pictorial representation of the
measure μ. The interested reader may find more about this
subject (including some interesting photos) in [15] (mainly
chapter 9) and [16]. More about the DA and RIA can also be
found in [15]. In Figure 1, the attractor of the Sierpinski’s
triangle (a) was constructed using DA, while the fern-like
attractor (b) was constructed using RIA with a suitable
selection for the probabilities (in particular, p1 = 0.01, p2 =
0.69, p3 = 0.15, p4 = 0.15). We should, also, note that in
both algorithms it is preferred to start with points which we
know they belong in the attractor. Thus, we will always get
subsets of the attractor itself, instead of points that lie near it.

2.2. Recurrent Iterated Function Systems. A more general
concept, that allows the construction of even more compli-
cated sets, is that of the Recurrent Iterated Function System,
or RIFS for short, which consists of an IFS {X ;w1−N},
together with an irreducible row-stochastic matrix P =(
pν,μ

)N
(pν,μ ∈ [0, 1] : ν,μ = 1, . . . ,N), such that

N∑

μ=1

pν,μ = 1, ν = 1, . . . ,N. (4)

The recurrent structure is given by the (irreducible) connec-

tion matrix C =
(
cν,μ

)N
, which is defined by

cν,μ =
⎧
⎨
⎩

1, if pμ,ν > 0,

0, if pμ,ν = 0,
(5)

where ν,μ = 1, 2, . . . ,N . The transition probability for a
certain discrete time Markov process is pν,μ, which gives the
probability of transfer into state μ, given that the process is
in state ν. Condition (4) says that whichever state the system
is in (say ν), a set of probabilities is available that sum to one
and describe the possible states to which the system transits
at the next step.

In this case, the construction of the contractive map W
needs a little more effort. First, we define the mappings

Wi, j : H(X)−→H(X), with Wi, j(A)=
⎧
⎨
⎩
wi(A), pj,i >0,

∅, pj,i=0
(6)

for all A ∈H(X) and the metric space

H̃(X) =H(X)N =H(X)×H(X)× · · · ×H(X) (7)
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Figure 1: Two known attractors that arise from IFS. (a) Sierpinski’s Triangle, (b) a fern.
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where I(i) = { j : pj,i > 0}, for i = 1, 2, . . . ,N . If wi

are contractions, then W is a contraction and there is E =
(E1,E2, . . . ,EN )t ∈ H̃(X) such that W(E) = E and Ei =⋃

j∈I(i) wi(Ej), for i = 1, 2, . . . ,N . The setG = ⋃N
i=1 Ei is called

the attractor of the RIFS {X ;w1−N ,P}.

Next, we construct a sequence of sets that converge to the
attractor. LetA ∈H(X). We define the sequences {An}n∈N in
H̃(X) and {An}n∈N in H(X) as follows: A0 = (A,A, . . . ,A)t,
An = W(An−1), and An =

⋃N
i=1 (An)i, for n ∈ N, where An =

((An)1, (An)2, . . . , (An)N ). Evidently

G = lim
n→∞An. (10)

We emphasize that the attractor of an RIFS depends not
only on the corresponding IFS but also on the stochastic
matrix. For example, the following IFS equipped with
different stochastic matrices produces different attractors
(see Figure 2):
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Both DA and RIA can be modified to construct the
attractor of any RIFS. The modification of DA is described
above, where the sequences {An}n∈N are been defined. We
note that in many cases, the functions wi of the RIFS are
defined on a compact subset of X , which we call Xi, instead
of the space X itself, for i = 1, 2, . . . N . In this case the
initial vector A0 is defined as A0 = (B1,B2, . . . ,BN )t, where
Bi ⊆ wi(Xi), i = 1, 2, . . . N . The modification of the RIA
is much simpler. We start with an initial point x0 and an
initial state i0. Then we select arbitrarily, using the set of



4 SRX Mathematics

100806040200
0

10
20
30
40
50
60
70
80
90

100

P = 1
21

⎛
⎜⎜⎝

1 4 4 12

1 4 4 12

1 4 4 12

1 4 4 12

⎞
⎟⎟⎠

(a)

100806040200
0

10
20
30
40
50
60
70
80
90

100

P = 1
10

⎛
⎜⎜⎝

5 3 2 0

1 2 3 4

2 1 4 3

3 4 1 2

⎞
⎟⎟⎠

(b)

100806040200
0

10
20
30
40
50
60
70
80
90

100

P = 1
15

⎛
⎜⎜⎝

0 2 4 9

1 2 4 8

4 2 1 8

4 2 1 8

⎞
⎟⎟⎠

(c)

Figure 2: The attractors of the IFS defined by (11)-(12), equipped with various stochastic matrices. Note that the attractor shown in (a)
is a solid rectangle. It is the unequal weights of P and the finite number of iterations of the RIA algorithm that give the resulting figure its
nonuniform appearance. The 0 entries in the matrices for (b) and (c) give those sets a nonintegral dimension less than 2.

probabilities pi0,1, pi0,2, . . . , pi0,N , one of the mappings of the
RIFS and apply it to x0 to produce a new point x1. Suppose
that wi1 is the selected map, then x1 = wi1 (x0) and the system
transits to state i1. We continue this operation until enough
points are produced. We note that if the connection matrix
of the RIFS is reducible, this procedure will not work. The
produced graph will depend on the selection of the initial
state. Therefore, for RIFS with reducible connection matrices
the following modification of the RIA is needed: we start with
N initial points x0,1, x0,2, . . . , x0,N , such that x0,i ∈ wi(Xi),
for i = 1, 2, . . . ,N . For each point x0,i, i = 1, 2, . . . ,N , we
select randomly one of the maps of the RIFS, using the
set of probabilities {pi,1, pi,2, . . . , pi,N}, and apply it to x0,i

to produce the new point x
( j1,i)
1,i , where j1,i ∈ {1, 2, . . . ,N}

indicates that the selected map is wj1,i . After the completion

of this step, the new set of points is {x( j1,1)
1,1 , x

( j1,2)
1,2 , . . . , x

( j1,N )
1,N }.

Again, for each point x
( j1,i)
1,i , i = 1, 2, . . . ,N , we select

randomly one of the maps of the RIFS, using the set of

probabilities {pj1,i,1, pj1,i,2, . . . , pj1,i,N}, and apply it to x
( j1,i)
1,i

to produce the new point x
( j2,i)
2,i , where j2,i ∈ {1, 2, . . . ,N}

indicates that the selected map in the second step is wj2,i .
The procedure continues indefinitely. The produced points
trace out the attractor of the corresponding RIFS. Finally, we
should note that, as was the case in the IFS, the probabilities
of the RIFS determine a unique invariant measure μ, which
can be visualized in a computer screen (Figure 2(a) is a close
approximation of this procedure). It is possible (see Figures
2(b) and 2(c)) that there will be “holes” in the support of μ
(or equivalently in the graph of the attractor A), if some of
the transition probabilities are zero.

3. Fractal Interpolation Surfaces

In this section, we present a general construction of fractal
surfaces, that interpolate points placed on a rectangular grid.

The fractal surfaces emerge as attractors of specific RIFS.
Consider a data set:

Δ =
{(
xi, yj , zi, j

)
∈ I ×R;

i = 0, 1, . . . ,N1, j = 0, 1, . . . ,N2

}
⊂ I ×R,

(13)

such that 0 = x0 < x1 < · · · < xN1 = 1, 0 = y0 < y1 < · · · <
yN2 = 1, N1,N2 ∈ N, where I = [0, 1]2, which contains in
total (N1+1)·(N2+1) points. Consider, also, a data set Δ̂ ⊂ Δ:

Δ̂={(x̂k, ŷl, ẑk,l
)∈I×R; k = 0, 1, . . . ,M1, l = 0, 1, . . . ,M2

}
,

(14)

such that 0 = x̂0 < x̂1 < · · · < x̂M1 = 1, 0 = ŷ0 < ŷ1 < · · · <
ŷM2 = 1 M1,M2 ∈ N, which contains in total (M1 +1)·(M2 +
1) points. To simplify the notation we set

C0 =
{(
i, j
)
; i = 0, 1, . . . ,N1, j = 0, 1, . . . ,N2

}
,

D0 = {(k, l); k = 0, 1, . . . ,M1, l = 0, 1, . . . ,M2}
C1 =

{(
i, j
)
; i = 1, 2, . . . ,N1, j = 1, 2, . . . ,N2

}
,

D1 = {(k, l); k = 1, 2, . . . ,M1, l = 1, 2, . . . ,M2}.

(15)

The points of Δ divide [0, 1]2 into N1 ·N2 regions:

Ii, j = [xi−1, xi]×
[
yj−1, yj

]
(16)

for all (i, j) ∈ C1, while the points of Δ̂ divide [0, 1]2 into
M1 ·M2 domains:

Jk,l = [x̂k−1, x̂k]× [ ŷl−1, ŷl
]

(17)

for all (k, l) ∈ D1. We make the additional assumption that
for every (k, l) ∈ D1 there is at least one interpolation point,
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that lies in the interior of Jk,l × R. Furthermore, we define a
labeling map

J : C1 −→ D1 : J
(
i, j
) = (k, l) (18)

and the 1-1 functions Φ, Φ̂ (an enumeration of the sets C1

and D1, respectively) such that

Φ : C1−→{1, 2, . . . ,N1 ·N2} : Φ
(
i, j
)= i+( j−1

)
N1,

Φ̂ : D1−→{1, 2, . . . ,M1 ·M2} : Φ̂(k, l)=k+(l−1)M1.
(19)

We define the (N1 ·N2)× (N1 ·N2) stochastic matrix P by

pν,μ =

⎧
⎪⎨
⎪⎩

1
γν

, if IΦ−1(ν) ⊆ JJ(Φ−1(μ)),

0, otherwise,
(20)

where γν is the number of non zero elements of its νth row.
Consequently, the connection matrix C is defined as in
Section 2.2 and the connection vector V = {v1, v2, . . . ,
vN1·N2} as follows: vν = Φ̂(J(Φ−1(ν))), ν = 1, 2, . . . ,N1 ·
N2. In Figure 3, we show an example of the association
between the regions and the domains, which is implied
by the labeling map J, that defines the stochastic matrix,
the connection matrix and the connection vector of the
RIFS. The connection matrix and the connection vector, that
corresponds to the shown association, are given as follows:

C =
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,

V = (2, 1, 4, 3, 4, 1, 3, 2, 1, 4, 3, 2, 2, 1, 3, 4).

(21)
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I11 I12 I13 I14
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J11 J12

Figure 3: The interpolation points divide [0, 1]2 in 16 regions and
in 4 domains. The association between regions and domains is
shown with the arrows. For example, J(1, 1) = (1, 2), J(1, 2) =
(1, 1), J(1, 3) = (2, 2), J(1, 4) = (2, 1), and so forth. Thus, the
connection vector is V = (2, 1, 4, 3, 4, 1, 3, 2, 1, 4, 3, 2, 2, 1, 3, 4).

To complete the definition of the RIFS, we consider N1 ·
N2 mappings of the form

wi, j : JJ(i, j) ×R −→ Ii, j ×R : wi, j
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si, j z +Qi, j
(
x, y

)

⎞
⎟⎟⎠,

(22)

with

T1,i(x) = a1,ix + b1,i,

T2, j
(
y
) = a2, j y + b2, j

(23)

for all (x, y) ∈ Ii, j , where Qi, j is a Lipschitz continuous
function on [0, 1]n and si, j ∈ (−1, 1), for all (i, j) ∈ C1. The
parameters si, j , (i, j) ∈ C1 are called vertical scaling factors.
It is easy to show that there exists a metric ρθ (equivalent
with the Euclidean metric) such thatwi, j is a contraction with
respect to the metric h for all (i, j) ∈ C1. We confine the map
wi, j , so that it maps the interpolation points that lie on the
vertices of JJ(i, j) to the interpolation points that lie on the
vertices of Ii, j . Hence, we obtain the following relations:

T1,i(x̂k−1) = xi−1, T1,i(x̂k) = xi,

T2, j
(
ŷl−1

) = yj−1, T2, j
(
ŷl
) = yj ,

Fi, j
(
x̂k−δ1 , ŷl−δ2 , ẑk−δ1,l−δ2

) = zi−δ1, j−δ2

(24)

for all δ1, δ2 ∈ {0, 1}, (k, l) = J(i, j), and (i, j) ∈
C1. Using the first four (12) equations, we can compute
a1,i, a2, j , b1,i, b2, j , in terms of the interpolation points and
the vertical scaling factors, for all (i, j) ∈ C1.

Consequently, the RIFS {[0, 1]2 × R,wi, j ,P; (i, j) ∈ C1}
has a unique attractor G. In general G is a compact subset
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of R3 containing the points of Δ. The following Proposition
gives conditions so that G is the graph of a continuous
function f . These conditions involve points that lie on ∂Ii, j×
R, for all (i, j) ∈ C1, (where ∂Ii, j is the boundary of Ii, j).

Proposition 1. Let h ∈ C(
⋃

(i, j)∈C1
∂Ii, j) be a Lipschitz

function, that interpolates the points of Δ (i.e., h(xi, yj) =
zi, j , (i, j) ∈ C1). If the RIFS defined above satisfies the
conditions

Fi, j
(
x̂k−1, y,h

(
x̂k−1, y

)) = h
(
xi−1,T2, j

(
y
))

,

Fi, j
(
x̂k, y,h

(
x̂k, y

)) = h
(
xi,T2, j

(
y
))

,

Fi, j
(
x, ŷl−1,h

(
x, ŷl−1

)) = h
(
T1,i(x), yj−1

)
,

Fi, j
(
x, ŷl,h

(
x, ŷl

)) = h
(
T1,i(x), yj

)
,

(25)

where (k, l) = J(i, j), for all (x, y) ∈ JJ(i, j), (i, j) ∈ C1, then
its attractor G is the graph of a continuous function f that
interpolates the data points.

The proof of the above proposition, together with several
methods that one may use to select suitable functions Qi, j , so
that the RIFS satisfies the conditions (25), can be found in
[14]. Here, we are interested in the special case described in
the following corollary.

Corollary 1. Let h ∈ C(
⋃

(i, j)∈C1
∂Ii, j) be a Lipschitz function

that interpolates the points of Δ. Consider the case where

Qi, j
(
x, y

) = H
(
T1,i(x),T2, j

(
y
))

− si, j · B
(
x, y

)
, ∀(x, y

) ∈ JJ(i, j),
(
i, j
) ∈ C1,

(26)

where H and B are Lipschitz functions defined on [0, 1]2, such
that

H
(
x, y

) = h
(
x, y

)
, for

(
x, y

) ∈ ∂Ii, j ,

B
(
x, y

) = h
(
x, y

)
, for

(
x, y

) ∈ ∂JJ(i, j).
(27)

The unique attractor G of the corresponding RIFS {[0, 1]2 ×
R,wi, j ,P; (i, j) ∈ C1} is the graph of a continuous function f
that interpolates the points of Δ.

The functions H and B mentioned in the corollary
may be considered as some kind of building blocks for the
constructed FIS. It is straightforward to see that in the trivial
case where si, j = 0, for all i, j, the resulting attractor will be
the graph of H . Otherwise, the attractor can be obtained as
a sum of H and H − B multiplied by si, s2i , and so forth.
Examples of such constructions for the 1-dimensional case
may be found in [15, page 218].

3.1. A Construction Using Partial Differential Equations. It is
well known that in the case of the construction of affine FIFs
of one variable, the attractor depends only on the choice
of the interpolation points (and of course on the choice

of the vertical scaling factors). It was shown in [14] that
a similar property holds for multivariate FIFs of certain
type (see Proposition 1). For example, in the case of fractal
interpolation surfaces, one needs to know the interpolation
points and the desired values of the constructed function on
the borders of the interpolation grid. If all this information
is available, then a unique FIS is determined. This fact closely
resembles the case in many PDE-related problems with
boundary conditions, that arise in physics and engineering
(e.g., Laplace’s equation with boundary conditions, Plateau’s
problem etc.). In fact, it is not hard to see that the problem
of the well known self-affine fractal interpolation (see [15])
of one variable can be recast as follows (in the context of
Corollary 1 for functions of one variable):

(i) find a function H|[xi−1,xi] that solves the Laplace’s
equation with boundary conditions H(xi) = yi,
H(xi−1) = yi−1, for i = 1, . . . ,N ,

(ii) find a function B that solves the Laplace’s equation
with boundary conditions B(x0) = y0, B(xN ) = yN ,

where {(x0, y0), . . . , (xN , yN )} are the interpolation points.
Similarly, the problem of bivariate fractal interpolation on
collinear interpolation points on the boundary’s grid (see
[10]) can be recast as the problem of finding suitable H
and B functions that solve the two-dimensional Laplace’s
equation on linear boundaries. Here we show that both cases
are examples of a more general procedure.

Consider the set C̃kΔ, which consists of continuous
functions that are defined only on

⋃
(i, j)∈C1

∂Ii, j , interpolate
the points of Δ, and have continuous partial derivatives up to
kth order in

⋃
(i, j)∈C1

∂Ii, j . Let R([0, 1]2) be the set containing

all the subsets of [0, 1]2 of the form [a1, b1] × [a2, b2] and a
kth order Partial Differential Equation (PDE) defined on the
set R ∈R([0, 1]2), such that its solution g satisfies

g
∣∣
∂R = v, (28)

where v ∈ Ck(∂R). The problem of finding a function,
which solves a specified partial differential equation (PDE)
in the interior of a given region (Ii, j), that takes prescribed
values on the boundary of that region, is called a Dirichlet’s
problem. Assuming that the PDE is uniquely solvable for any
R ∈R([0, 1]2) and any v ∈ Ck(∂R) and that the solution is a
Lipschitz function, we consider the operator

PR : Ck(∂R) −→ Ck(R) : PR(v) = g, (29)

that assigns any function v defined on ∂R to the solution g of
the corresponding PDE with boundary conditions as in (28).

Now, consider a function h ∈ C̃kΔ. This function may
consists of splines, Hermitian functions, or any other types of
1-dimensional interpolants, that have the desired properties.
We will construct an RIFS, whose attractor will be the graph
of a continuous function. As mentioned above, we study the
case where Qi, j(x, y) = H(T1,i(x),T2, j(y))− si, j · B(x, y), for



SRX Mathematics 7

1
0.8

0.6
0.4

0.2
0

1
0.8

0.6
0.4

0.2
0

5
10
15
20

(a)

1
0.8

0.6
0.4

0.2
0

1
0.8

0.6
0.4

0.2
0

5
10
15
20

(b)

1
0.8

0.6

0.4

0.2

0

1

0.8
0.6

0.4
0.2

0

5

10

15

20

(c)

1
0.8

0.6

0.4
0.2

0

1

0.8

0.6

0.4

0.2

0

5

10

15

20

(d)

1

0.8
0.6

0.4
0.2

0

1
0.8

0.6
0.4

0.2
0

5

10

15

20

(e)

Figure 4: An example of the construction. Here N1 = N2 = 5, the regions have dimensions 0.25× 0.25 and the domains 0.5× 0.5. We used
Laplace’s partial differential equation (∂2g/∂x2 + ∂2g/∂y2 = 0) with Dirichlet’s boundary conditions. (a) The set of interpolation points. (b)
The function h. (c) The function H . (d) The function B. (e) The fractal interpolation surface.

all (x, y) ∈ JJ(i, j), (i, j) ∈ C1, as in Corollary 1. We compute
H and B as follows:

H|Ii, j = PIi, j

(
h|∂Ii, j

)
,

B|J(i, j) = PJJ(i, j)

(
h|∂JJ(i, j)

)
,

(30)

for all (i, j) ∈ C1. In this case, the conditions of Corollary 1
are satisfied for the RIFS {[0, 1]2 × R, wi, j , P; (i, j) ∈ C1},
for any selection of the stochastic matrix P. Thence, the
unique attractor G of the corresponding RIFS is the graph
of a continuous function f , that interpolates the points of
Δ.
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(a) (b) (c)

Figure 5: An example of the algorithm, where N1 = 3, N2 = 3, α = 2, and n = 2. In this case, there are four regions and one domain. Thus,
the RIFS is actually an IFS. The connection vector is V = (1, 1, 1, 1). The algorithm is expected to produce 81 points for the attractor. In all
the figures the squares represent the projection of the points on R2. (a) The initial interpolation points are shown with black. The points of
Δ̂ are the four corners. (b) The points produced after one iteration (c) The points produced after 2 iterations.

We summarize the procedure of the construction.

(1) We take (as input) a set Δ of interpolation points
placed on a rectangular grid, a set of N1 · N2 vertical
scaling factors, and a specific partial differential
equation (see Figure 4(a)).

(2) We select a set Δ̂ (a subset of Δ) of points that are also
placed on a rectangular grid. The points of Δ form
the N1 · N2 regions Ii, j , for all (i, j) ∈ C1, while the

points of Δ̂ form theM1 ·M2 domains Jk,l. The points
of Δ̂ are chosen so that inside each domain lies at least
one region. Additionally, we select a function J that
associates each region to a specific domain. From this
function we compute the connection vector V .

(3) We construct arbitrary (N1 + 1) · (N2 + 1) 1-
dimensional functions that interpolate the points of
Δ. This is the function h (see Figure 4(b)).

(4) We solve (numerically) the partial differential equa-
tion inside the region Ii j , so that its solution g
satisfies the boundary conditions g|∂Ii j = h|∂Ii j , for all
(i, j) ∈ C1 (Dirichlet’s problem). Hence, we obtain
the function H (see Figure 4(c)).

(5) We solve (numerically) the partial differential equa-
tion inside Jkl, so that its solution g satisfies the
boundary conditions g|∂Jkl = h|∂Jkl , for all (k, l) ∈ D1.
Hence, we obtain the function B (see Figure 4(d)).

(6) Finally, we construct the attractor of the correspond-
ing RIFS (see Figure 4(e)).

4. The Algorithm

In Section 2.2, we described how RIA and DA can be
modified to construct the attractor of any RIFS. As any fractal
interpolation surface is the attractor of a specific RIFS, we
should expect that those algorithms may be used to construct
it. This is true; however in this case, the projections of the

produced points on R2 will form an nonuniform grid. This
means that there will be “dense” and “sparse” areas, with
a lot of produced points, and very few points respectively.
Here, we describe an algorithm that solves this problem. For
simplicity, we assume that the regions and the domains are
squares with dimensions δ × δ and ψ × ψ, respectively. We
choose δ and ψ so that ψ = α·δ, where α ∈ N. The algorithm
produces ((N1 − 1) · αn + 1) × ((N2 − 1) · αn + 1) points (n
is the number of iterations), so that their projections on R2

form a square of uniformly distributed points. An example of
the operation of the algorithm is given in Figure 5. We note
that the number N1 − 1 must be a multiple of α (to be more
specific: N1 − 1 = α · (M1 − 1)).

(1) INPUT: The N1 × N2 interpolation points, the
number α, that defines which points belong in Δ and
which points belong in Δ̂, a set of N1 · N2 vertical
scaling factors, the connection vector V , the number
of iterations n, and the PDE.

(2) The initial set G is set to contain all the interpolation
points (N1 ×N2 points).

(3) The projections of the interpolation points on R2

form N2 horizontal lines and N1 vertical lines. For
each one of theN2 horizontal lines we compute (N1−
1) · αn + 1 points of a function that interpolates the
corresponding points. Similarly, for each one of the
N1 vertical lines we compute (N2−1)·αn+1 points of
a function that interpolates the corresponding points.

(4) Form the function H.
For i := 1 to N1 DO:

(a) For j := 1 to N2 DO:

(i) We solve numerically, inside the region
Ii, j , the partial differential equation with
Dirichlet’s boundary conditions defined by
the computed points of the interpolation
functions.
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Figure 6: The two fractal surfaces (shown above) were constructed using the same parameters, but different partial differential equations.
In (a) Laplace’s equation was used (∂2g/∂x2 + ∂2g/∂y2 = 0), while in (b) the corresponding PDE is: ∂2g/∂x2 + ∂2g/∂y2 = 80.
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Figure 7: Some examples of the proposed construction. At the left side, the interpolation points and the chosen borders are shown. At the
right side, one can see the constructed fractal surfaces. We used Laplace’s PDE in both examples.
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(5) Form the function B.
For k := 1 to M1 DO:

(a) For l := 1 to M2 DO:

(i) We solve numerically, inside the domain
Jk,l, the partial differential equation with
Dirichlet’s boundary conditions defined by
the computed points of the interpolation
functions.

(6) Form the attractor of the RIFS.
For r := 1 to n DO

(a) For i := 1 to N1 DO:

(i) For j := 1 to N2 DO:

(A) We deal with the points of the region
Ii, j . First of all, we find the correspond-
ing domain Jk,l, using the connection
vector: (k, l) = Φ̂(vΦ(i, j)).

(B) As the parameters of the map wi, j are
computed by the functions H and B,
we may use wi, j to map all the points
of G, that lie inside Jk,l. Therefore,
we obtain some new points inside the
region Ii, j .

(b) The new set G contains all the points that were
produced by the previous iterations (((N1−1) ·
αr + 1)× ((N2 − 1) · αr + 1) points).

(7) OUTPUT: After the completion of the iterations, the
final setG contains points that belong to the attractor
of the RIFS.

As noted, the output of the algorithm is a set of points,
that their projections on [0, 1]2 form a square of uniformly
distributed points, placed on an orthogonal grid. We can use
these points to produce a 3D surface using any 3D graphics
suit. The produced surface depends greatly on the selection
of the partial differential equation (see Figure 6). In fact, one
can use different PDEs in each region/domain. In Figure 7,
we give some examples of the application of the algorithm on
arbitrary data. We note that in most of the examples we used
the Laplace’s PDE. For future research, it would be interesting
to investigate more thoroughly how the choice of the PDE
affects the resulting fractal surface.
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